
Enabling Concurrent Failure Recovery for
Regenerating-Coding-Based Storage Systems:

From Theory to Practice
Runhui Li, Jian Lin and Patrick P. C. Lee

Abstract—Data availability is critical in distributed storage systems, especially when node failures are prevalent in real life. A key

requirement is to minimize the amount of data transferred among nodes when recovering the lost or unavailable data of failed nodes.

This paper explores recovery solutions based on regenerating codes, which have been designed to provide fault-tolerant storage and

minimum bandwidth. Existing optimal regenerating codes are designed for single node failures. We build a system called CORE, which

augments existing optimal regenerating codes to support a general number of failures including single and concurrent failures. We show

theoretically that CORE achieves the minimum possible bandwidth for most cases. We implement a CORE prototype and evaluate it

atop an HDFS cluster testbed with up to 20 storage nodes. We demonstrate that our CORE prototype conforms to our theoretical

findings and achieves bandwidth savings when compared to the conventional recovery approach based on erasure codes.

Keywords—regenerating codes, failure recovery, distributed storage systems, coding theory, experiments and implementation

✦

1 INTRODUCTION

To provide high storage capacity, large-scale distributed
storage systems have been widely deployed in enter-
prises, such as Google File System [15], Amazon Dy-
namo [10], and Microsoft Azure [5]. In such systems,
data is striped across multiple nodes (or servers) that
offer local storage space. Nodes are interconnected over
a networked environment, in the form of either clustered
or wide-area settings.

Ensuring data availability in distributed storage sys-
tems is critical, given that node failures are prevalent
[15]. Data availability can be achieved via erasure codes
(e.g., Reed-Solomon codes [41]), whose main idea is to
encode data segments into parity segments, such that a
subset of the data and parity segments can sufficiently
reconstruct the original data segments. Erasure codes can
tolerate multiple failures, while incurring less storage
overhead than replication.

In addition to tolerating failures, another crucial avail-
ability requirement is to recover any lost or unavailable
data of failed nodes. Recovery is performed in two
scenarios: (i) when the failed nodes are crashed and
the permanently lost data need to be restored on new
nodes, and (ii) when the unavailable data needs to be
accessed by clients before the failures are restored. The
conventional recovery approach, which applies to any
erasure code, first reconstructs all original data to ob-
tain the lost/unavailable data. Since the lost/unavailable

• R. Li, J. Lin and P. Lee are with the Chinese University of Hong Kong,
Shatin, N.T., Hong Kong (emails: {rhli, jlin, pclee}@cse.cuhk.edu.hk)

• A 6-page shorter conference version of this paper appeared in Proceedings
of the 29th IEEE Conference on Massive Data Storage (MSST), May 2013
[32]. In this journal version, we include additional results of our analysis
and testbed experiments on CORE.

data usually accounts for only a fraction of the original
data, previous studies explore how to optimize the re-
covery performance by minimizing the amount of data
communicated. One class of approaches is to minimize
I/Os (i.e., the amount of data read from disks) based on
erasure codes (e.g., [26], [30], [42], [53], [55]). Another
class of approaches is to minimize the bandwidth (i.e.,
the amount of data transferred over a network during
recovery) based on regenerating codes [11], in which each
surviving node encodes its stored data and sends en-
coded data for recovery. In the scenario where network
capacity is limited, minimizing the bandwidth can im-
prove the overall recovery performance. In this work, we
explore the feasibility of deploying regenerating codes in
practical distributed storage systems.
Most existing recovery approaches, including those for

minimizing I/Os and bandwidth, are restricted to single
failure recovery. Although single failures are common in
distributed storage systems [39], node failures are often
correlated and co-occurring in practice, as reported in
both clustered storage (e.g., [14], [43]) and wide-area
storage (e.g., [6], [20], [33]). To provide tolerance against
concurrent (multiple) failures, data is usually protected
with a high degree of redundancy. For example, Clever-
safe [7], a commercial wide-area storage system, uses
(16,10) erasure codes (i.e., up to 6 out of 16 concurrent
failures are tolerable) [36]. Some wide-area storage sys-
tems such as OceanStore [31] and CFS [8] employ erasure
codes with even higher double redundancy (n, n/2).
Thus, we believe that minimizing the bandwidth for

concurrent failure recovery provides additional benefits
for today’s large-scale distributed storage systems. For
example, concurrent failure recovery is beneficial to
delaying immediate recovery [2], [50]. That is, we can
perform recovery only when the number of failures ex-

2

ceeds a tolerable limit. This avoids unnecessary recovery
should a failure be transient and the data be available
shortly (e.g., after rebooting a failed node). Given the
importance of concurrent failure recovery, we thus pose
the following questions: (1) Can we achieve bandwidth
saving, based on regenerating codes, in recovering a
general number of failures including single and concur-
rent failures? (2) If we can enable regenerating codes to
recover concurrent failures, can we seamlessly integrate
the solution into a practical distributed storage system?
In this paper, we propose a complete system called

CORE, which supports both single and concurrent fail-
ure recovery and aims to minimize the bandwidth of
recovering a general number of failures. CORE augments
existing optimal regenerating codes (e.g., [37], [51]),
which are designed for single failure recovery, to also
support concurrent failure recovery. A key feature of
CORE is that it retains existing optimal regenerating
code constructions and the underlying regenerating-
coded data. That is, instead of proposing new code
constructions, CORE adds a new recovery scheme atop
existing regenerating codes. Its main idea is to download
the same data as that would have been downloaded
under the existing regenerating codes for recovery of
each of the failed nodes and show that all the failed
nodes can be concurrently recovered.
This work studies both the theoretical and applied

aspects of CORE. On the theoretical side, we show that
CORE achieves the minimum bandwidth for a majority
of concurrent failure patterns. We also propose exten-
sions to CORE to achieve sub-optimal bandwidth sav-
ing even for the remaining concurrent failure patterns.
Our analytical study validates that CORE can recover
concurrent failure patterns with significant bandwidth
savings over conventional recovery based on erasure
codes. For example, for (20,10), the bandwidth savings
are 36-64% and 25-49% in the optimal and sub-optimal
cases, respectively. We also show via analysis that CORE
has significantly higher durability than conventional re-
covery.
On the applied side, we implement a prototype of

CORE and demonstrate the feasibility of deploying
CORE, or regenerating codes in general, in a practical
distributed storage system. As a proof of concept, we
choose the Hadoop Distributed File System (HDFS) [49]
as a starting point. CORE sits as a layer atop HDFS and
supports recovery for a general number of failures. We
also adopt a pipelined implementation that parallelizes
and speeds up the recovery process. We extensively
experiment CORE on an HDFS testbed with up to 20
storage nodes. We show that compared to erasure codes,
CORE achieves recovery throughput gains with up to
3.4× for single failures and up to 2.3× for concurrent fail-
ures. Our experimental results conform to our theoretical
findings. We also evaluate the runtime performance of
MapReduce jobs under node failures. We note that there
remain very limited studies on the practical deploy-
ment of regenerating codes in the literature. Our CORE

implementation provides insights into the feasibility of
regenerating-coding-based recovery in improving the
availability of a practical storage system.
The rest of the paper proceeds as follows. Section 2

formulates our system model. Section 3 presents the
design of CORE and our analytical findings. Section 4
describes the implementation details of CORE. Section 5
presents experimental results. Section 6 reviews related
work. Section 7 discusses open issues, and finally, Sec-
tion 8 concludes this paper. We also refer readers to our
digital supplementary file for additional analysis.

2 SYSTEM MODEL

2.1 Basics

We first define the terminologies and notations. Table 1
summarizes the major notations used in this paper. We
consider a distributed storage system composed of a
collection of nodes, each of which refers to a physical
storage device. The storage system contains n nodes
labeled by N0, N1, · · · , Nn−1, in which k nodes (called
data nodes) store the original (uncoded) data and the
remaining n − k nodes (called parity nodes) store parity
(coded) data. The coding structure is systematic, meaning
that the original data is kept in storage.
Figure 1 shows an example of a distributed storage

system, which is also consistent with the erasure-coded
design of HDFS called HDFS-RAID [22]. Each node
stores a number of segments. A segment is the basic
unit of read/write operations in a storage system. It
is called a data segment if it holds original data, or a
parity segment if it holds parity data. To store data/parity
information, we partition the stored data into collec-
tions of n segments that comprise k data segments and
n−k parity segments. To generate parity segments, each
data (parity) segment is partitioned into fixed-size data
(parity) strips of r packets each, such that a packet is
the basic unit of encoding/decoding operations. Each
parity strip is encoded from the k data strips, and a
stripe is composed of k data strips and (n − k) parity
strips. Encoding is done on a per-stripe basis. A data
(parity) segment contains all data (parity) strips, so each
collection of n segments comprises multiple stripes. The
n segments in each collection are distributed across n
nodes. For load balancing reasons the identities of the
data/parity nodes are rotated so that the data and parity
segments are evenly distributed across nodes [30], [36].
Each stripe is independently encoded. Our discussion

thus focuses on a single stripe and our recovery scheme
will operate on a per-stripe basis. Let M be the total
amount of original uncoded data stored in a stripe. Let
si,j be a stored packet of node Ni at offset j in a stripe,
where i = 0, 1, · · · , n − 1 and j = 0, 1, · · · r − 1. Each
stripe contains nr stored packets, which can be formed
by multiplying an nr×kr generator matrix by a vector of
kr original data packets based on Galois field arithmetic,
whose implementation details can be found in the prior
study [17]. This work focuses on the arithmetic over

3

TABLE 1
Major notations used in this paper.

n number of nodes
Ni the i-th node (0 ≤ i ≤ n− 1)
k number of data nodes
r number of packets per strip
t number of concurrent failures (1 ≤ t ≤ n− k)
M size of original data stored in a stripe
si,j the j-th stored packet in a stripe of node Ni (0 ≤

i ≤ n− 1, 0 ≤ j ≤ r)
ei,i′ encoded packet from surviving node Ni to de-

code lost data of failed nodeNi′ (0 ≤ i, i′ ≤ n−1)

Data nodes

SegmentStripe

Parity nodes

Strip

s0,0

s0,1

s1,0

s1,1

s2,0

s2,1

s3,0

s3,1

s4,0

s4,1

s5,0

s5,1

N0 N1 N2

s0,0Packet

N3 N4 N5

s0,2 s1,2 s2,2 s3,2 s4,2 s5,2

Fig. 1. Example of a distributed storage system, where
n = 6, k = 3, and r = 3. Nodes N0, N1, and N2 are data

nodes, while N3, N4, and N5 are parity nodes.

the Galois field GF(28). Note that our recovery scheme
applies to the failures of both data and parity nodes. It
treats each stored packet si,j the same way regardless of
whether it is a data or parity packet.
For data availability, we have the storage system

employ an (n, k) erasure code that is maximum distance
separable (MDS), meaning that the stored data of any k
nodes can be used to reconstruct the original data. That
is, an (n, k) MDS-coded storage system can tolerate any
n−k out of n concurrent failures. MDS codes also ensure
optimal storage efficiency, such that each node stores M

k

units of data per strip. Reed-Solomon (RS) codes [41]
are a classical example of MDS codes. RS codes can
be implemented with strip size r = 1 to minimize the
generator matrix size.

2.2 Recovery

Our recovery addresses two types of node failures. The
first type is the recovery from permanent failures (e.g.,
due to crashes) where data is permanently lost. In this
case, we reconstruct the lost data of the failed nodes on
new nodes to minimize the window of vulnerability. An-
other type is degraded reads to the temporarily unavail-
able data during transient failures (e.g., due to system
reboots or upgrades) or before the permanent failures
are restored. The reads are degraded as the unavailable
data needs to be reconstructed from the available data
of other surviving nodes. In our discussion, we use

Relayer

N4 N5N3
N2

N1

N0

New nodes /
Clients

I/O

Encode
(optional)

Download

Decode

Upload

Fig. 2. Recovering nodes N0 and N1 using the relayer.

“lost data” to refer to both permanently lost data and
temporarily unavailable data.
The storage system activates recovery of lost data

when there are a number t ≥ 1 of failed nodes. Clearly,
we require t ≤ n − k, or the original data will be
unrecoverable. We call the set of t failed nodes the failure
pattern. The lost data will be reconstructed by the data
stored in other surviving nodes.
Our recovery builds on the relayer model, in which

a relayer daemon coordinates the recovery operation.
Figure 2 depicts the relayer model. During recovery, each
surviving node performs two steps: (i) I/O: it reads its
stored data, and (ii) encode: it combines the stored data
into some linear combinations and is necessary for some
erasure code constructions (see Section 2.3). The relayer
daemon performs three steps: (i) download: it downloads
the data from some other surviving nodes, (ii) decode: it
decodes the lost data using the downloaded data, and
(iii) upload: it uploads the decoded data to the new nodes
(for recovery from permanent failures) or to the client
who requests the data (for degraded reads). We assume
that the relayer is reliable during the recovery process.
Note that this relayer model is used in prior studies
in the contexts of peer-to-peer storage [2], data center
storage [26], and proxy-based cloud storage [23].
To improve the recovery performance of a distributed

storage system with limited network bandwidth, it is im-
portant to minimize the amount of data transferred over
the network. If the number of failed nodes is small, the
amount of data being downloaded from the surviving
nodes is larger than the amount of decoded data being
uploaded to new nodes or clients. If we pipeline the
download and upload steps (see Section 4.2), then the
download step becomes the bottleneck. Thus, we focus
on optimizing the download step in recovery. Formally,
we define the recovery bandwidth as the total amount of
data being downloaded per stripe from the surviving
nodes to the relayer during recovery. Our goal is to
minimize the recovery bandwidth.

2.3 Regenerating Codes

When a conventional erasure-coded system detects fail-
ures, the relayer downloads data from any k surviv-
ing nodes and recovers the lost data. We refer to this
recovery process as conventional recovery. The amount
of data being downloaded in conventional recovery is

4

equal to the amount of original data being stored (i.e.,
M per stripe). Note that some erasure code constructions
allow less data to be read (see Section 6). However,
conventional recovery applies to any MDS erasure code
and any number of failures no more than n − k. In this
paper, when we refer to erasure codes, we assume that
conventional recovery is used.

We consider a special class of codes called regenerating
codes [11] that enables the relayer to download less than
the amount of original data being stored. Regenerating
codes build on network coding [1], in which during
recovery, surviving nodes compute and send encoded
packets to the relayer, which then decodes the lost
data using the encoded packets. Each encoded packet is
formed by a linear combination of the stored packets in
a surviving node (note that it may be identical to one of
the stored packets). It is shown that regenerating codes
lie on an optimal tradeoff curve between storage cost and
recovery bandwidth [11]. There are two extreme points:
minimum storage regenerating (MSR) codes, in which each
node stores the minimum amount of data on the tradeoff
curve, and minimum bandwidth regenerating (MBR) codes,
in which the bandwidth is minimized. Note that MSR
codes have the optimal storage efficiency and are MDS
(see Section 2.1), while MBR codes minimizes bandwidth
at the expense of higher storage overhead. In this work,
we focus on MSR codes.

Existing optimal MSR codes are designed for recover-
ing a single failure, as described below. First, the strip
has r = n− k packets to achieve the minimum possible
bandwidth. During recovery, the relayer downloads one
encoded packet from each of the n− 1 surviving nodes1.
Let ei,i′ be the encoded packet downloaded from node
Ni and used to decode the lost packets of the failed
node Ni′ . Each encoded packet ei,i′ is a function of the
packets si,0, si,1, · · · , si,r−1 stored in the surviving node
Ni, and has the same size as each stored packet. Using
the encoded packets, the relayer decodes the lost packets
of the failed node Ni′ . MSR codes achieve the minimum
recovery bandwidth (denoted by γMSR) for single failure
recovery given by [11]:

γMSR =
M(n− 1)

k(n− k)
. (1)

However, if more than one node fails, the optimal MSR
code constructions cannot achieve the saving shown in
Equation (1) by connecting to n− 1 surviving nodes. To
recover concurrent failures, a straightforward approach
is to resort to conventional recovery and download the
size of original data from any k surviving nodes. This
paper explores if we can achieve recovery bandwidth
savings for concurrent failures as well.

1. There are MSR code constructions (e.g., [37], [51]) that can down-
load encoded packets from fewer than n − 1 surviving nodes at the
expense of higher recovery bandwidth. In this paper, we mainly focus
on the case where n − 1 surviving nodes are connected. Our digital
supplementary file provides additional analysis when the baseline
MSR codes connect to fewer than n− 1 surviving nodes.

3 DESIGN OF CORE

CORE builds on existing MSR code constructions that
are designed for single failure recovery with parameters
(n, k). CORE has two major design goals. First, CORE
preserves existing code constructions and stored data.
That is, we still have data striped and stored with
existing MSR code constructions, while CORE sits as a
layer atop existing MSR code constructions and enables
efficient recovery for both single and concurrent failures.
The optimal storage efficiency of MSR codes is still
preserved. Second, CORE aims to minimize recovery
bandwidth for a variable number t ≤ n−k of concurrent
failures, without requiring t to be fixed before a code is
constructed and the data is stored.
In this section, we first describe the baseline approach

of CORE, in which we extend the existing optimal
solution of single failure recovery to support concurrent
failure recovery (Section 3.1). We note that the baseline
approach of CORE is not applicable in a small fraction
of failure patterns, so we propose a simple extension
that still provides bandwidth reduction for such cases
(Section 3.2). We present theoretical results showing that
CORE can reach the optimal point for a majority of
failure patterns (Section 3.3). Finally, we analyze the
recovery bandwidth savings (Section 3.4) and reliability
(Section 3.5) of CORE.
In our digital supplementary file, we present the

proofs of the theorems stated in Section 3.3. We also
provide additional analysis bandwidth savings of CORE
when compared to the baseline MSR codes and imme-
diate recovery.

3.1 Baseline Approach of CORE

We first provide the background of existing MSR code
constructions on which CORE is developed. We then
define the building blocks of CORE, and explain how
CORE uses these building blocks to support concurrent
failure recovery.
Background. CORE can build on existing optimal

MSR code constructions including Interference Align-
ment (IA) codes [44], [46], [51] and Product-Matrix (PM)
codes [37]. Here, we provide a high-level overview of
how IA codes work; PM codes work similarly. IA codes
are originally proposed in [46] (subsequently called
MISER codes [44]) with the encoding and decoding al-
gorithms for data segments, and the decoding algorithm
for parity segments are proposed in [51]. In a high
level, IA codes extend the idea of aligning interference
signals in wireless communication into failure recovery
in distributed storage systems. Recall that each stripe
in regenerating codes contains k(n − k) original data
packets (see Section 2.1). Each stored packet can be
viewed as a linear combination of the k(n − k) original
data packets. Suppose that a data node fails (the similar
idea also applies for parity nodes). The n − 1 surviving
nodes compute the n − 1 encoded packets (denoted by
y = (y1, · · · , yn−1)

T). The relayer downloads the n − 1

5

encoded packets and decodes the n−k lost data packets
(denoted by x1 = (x1, · · · , xn−k)

T) of the failed node.
There are other (k − 1)(n− k) data packets (denoted by
x2 = (x(n−k)+1, · · · , xk(n−k))

T) that need not be regener-
ated and thus can be viewed as interference signals. We
can express y as a system of equations in x1 and x2 as:

(

A
∣

∣ B
)

(

x1

x2

)

= y,

for some coefficient matrices A and B of sizes (n− 1)×
(n − k) and (n − 1) × (k − 1)(n − k), respectively. By
elementary row operations, we can transform the system
of equations into:

(

A′
∣

∣ 0

0
∣

∣ B′

)(

x1

x2

)

= y′,

for transformed vector y′ and transformed matrices A′

and B′ of sizes (n−k)×(n−k) and (k−1)×(k−1)(n−k),
respectively. Note that IA codes ensure that there exists
some transformation that makes A′ an invertible matrix,
so that x1 (i.e., the lost packets) can be uniquely solved.
IA codes construct the generator matrix that satisfies

the above properties. PM codes have a similar idea using
a different generator matrix design. We refer readers to
[37], [44], [46], [51] for their mathematical details on the
generator matrix design. We point out that constructing
erasure codes that achieve interference alignment has
been a challenging topic for several years.
Note that both IA and PM codes have parameter

constraints. IA codes require n ≥ 2k, and PM codes
require n ≥ 2k − 1. In this work, we mainly focus on
the double redundancy n = 2k, which is also considered
in state-of-the-art distributed storage systems such as
OceanStore [31] and CFS [8]. While the redundancy
overhead is higher than traditional RAID-5 and RAID-6
codes for large (n,k), it remains less than traditional 3-
way replication used in production storage systems such
as GFS [15] and HDFS [49].
Building blocks. Our observation is that any optimal

MSR code construction can be defined by two functions.
Let Enci,i′ be the encoding function that is called by
node Ni to generate an encoded packet ei,i′ for the
failed node Ni′ using the r = n − k stored packets in
node Ni as inputs; let Deci′ be the decoding function
that returns the set of n − k stored packets of a failed
node N ′

i using the encoded packets from the other n− 1
surviving nodes as inputs. Both Enc and Dec define the
operations of linear combinations of the stored packets
si,j ’s, depending on the specific code construction. From
the above discussion, Enc is to construct the encoded
packets y, while Dec is to decode the lost packets x1.
CORE works for any construction of optimal MSR

codes, as long as the functions Enc and Dec are well-
defined. The two functions Enc and Dec form the build-
ing blocks of CORE.
Main idea of the baseline approach. We consider two

types of encoded packets to be downloaded for recovery:
real packets and virtual packets. To recover each of the t

Relayer

e3,0

N4 N5N3N2

N1

N0

e2,0
e1,0

e4,0
e5,0

e3,1e2,1

e0,1

e4,1

e5,1

Fig. 3. Example of how the relayer downloads real and
virtual packets for a (6,3) code for the recovery of failed

nodes N0 and N1. Here, e1,0 and e0,1 are the virtual

packets.

failed nodes (where t > 1), the relayer still operates as
if it connects to n − 1 nodes, but this time it represents
the packets to be downloaded from the failed nodes as
virtual packets, while still downloading the packets from
the remaining n−t surviving nodes as real packets. Now,
using Enc and Dec, we compute each virtual packet
as a function of the downloaded real packets. Finally,
using the downloaded real packets and the reconstructed
virtual packets, we can decode the lost stored packets in
the failed nodes.
Example. We depict our idea using Figure 3, which

shows a (6,3) code and has failures N0 and N1. The two
encoded packets e1,0 and e0,1 are virtual packets, and the
rest are real packets. We can express e1,0 and e0,1 based
on Enc and Rec for single failure recovery as:

e1,0 = Enc1,0(s1,0, s1,1, s1,2)

= Enc1,0(Dec1(e0,1, e2,1, e3,1, e4,1, e5,1))

e0,1 = Enc0,1(s0,0, s0,1, s0,2)

= Enc0,1(Dec0(e1,0, e2,0, e3,0, e4,0, e5,0))

The encoded packet e1,0 is computed by encoding the
stored packets s1,0, s1,1, and s1,2, all of which can be
reconstructed from other encoded packets e0,1, e2,1, e3,1,
e4,1, and e5,1 based on single failure recovery. Thus, e1,0
can be expressed as a function of encoded packets. The
encoded packet e0,1 is expressed in a similar way. Now,
we have two equations with two unknowns e1,0 and e0,1.
If these two equations are linearly independent, we can
solve for e1,0 and e0,1. Then we can apply Dec0 and
Dec1 to decode the lost stored packets of N0 and N1.
In general, to recover t failed nodes, we have a total of
t(t−1) virtual packets. We can compose t(t−1) equations
based on the above idea. If these t(t − 1) equations
are linearly independent, we can solve for the virtual
packets. A subtle issue is that the system of equations
may not have a unique solution. We explain how we
generalize our baseline approach for such an issue in
the next subsection.

3.2 Recovering Any Failure Pattern

We aim to express virtual packets as functions of real
packets by solving a system of equations. However, we

6

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f
 b

a
d
 f
a
ilu

re
 p

a
tt
e
rn

s

t

(12,6)
(16,8)

(20,10)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

2 3 4 5

P
e
rc

e
n
ta

g
e
 o

f
 b

a
d
 f
a
ilu

re
 p

a
tt
e
rn

s

t

(12,6)
(16,8)

(20,10)

(a) IA codes (b) PM codes

Fig. 4. Percentages of bad failure patterns for different
(n, k) and t.

note that for some failure patterns (i.e., the set of failed
nodes), the system of equations cannot return a unique
solution. A failure pattern is said to be good if we can
uniquely express the virtual packets as a function of the
real packets, or bad otherwise. Our goal is to reduce the
recovery bandwidth even for bad failure patterns.
We first study the likelihood of having bad failure

patterns. However, developing theoretical proofs for
quantifying such likelihood is challenging, because the
likelihood depends on the code construction. We observe
that both IA and PM codes have different likelihoods for
the same parameters (n, k) and t. Fortunately, in practical
deployment, even though a storage system contains a
large number of nodes, the stripe size n is always limited
to a reasonably small value to avoid extra coding over-
head [30], [36]. Thus, we resort to enumeration, which
suffices for practical use cases and enables us to feasibly
identify all bad failure patterns in advance. Specifically,
given an (n, k) code and t failures, there are

(

n
t

)

possible
failure patterns. We enumerate all the possible failure
patterns and check if each of them is bad. We conduct
our enumeration for both IA and PM codes.
Figure 4 shows the percentages of bad failure patterns

for different combinations of (n, k) and t. We observe
that among all parameters we consider, bad failure pat-
terns only account for a small percentage, with at most
0.9% and 1.6% for IA and PM codes, respectively. Also,
for some sets of parameters, we do not find any bad
failure patterns. Nevertheless, we would like to reduce
the recovery bandwidth for such bad failure patterns
even though they are rare.
We now extend our baseline approach of CORE to deal

with the bad failure patterns, with an objective of reduc-
ing the recovery bandwidth over the conventional recov-
ery approach. For a bad failure pattern F , we include
one additional surviving node and form a virtual failure
pattern F ′, such that F ⊂ F ′ and |F ′| = |F|+ 1 = t + 1.
Then the relayer downloads the data from the n− t− 1
nodes outside F ′ needed for decoding the lost data of
F ′, although actually only the lost data of F needs to
be decoded. Figure 5 shows an example of how we use
a virtual failure pattern for recovery. If F ′ is still a bad
failure pattern, then we include an additional surviving
node into F ′, and repeat until a good failure pattern is
found. Note that the size of F ′ must be upper-bounded

Relayer

N4 N5N3N2

N1

N0

Lost data for

N0 and N1

Fig. 5. An example of using a virtual failure pattern for a

(6,3) code. If the original failure pattern {N0, N1} is bad,
then we can instead recover the virtual failure pattern

{N0, N1, N2} and only download encoded packets from

nodes N3, N4, N5.

by n−k, as we can always connect to k surviving nodes
to reconstruct the original data.
The number of bad failure patterns depends on the

code construction and the parameters (n, k). Reasoning
the presence of bad failure patterns remains an open
issue and is posed as future work.

3.3 Theoretical Results

We present two theorems. The first one shows the lower
bound of recovery bandwidth. The second one shows
that CORE achieves the lower bound for good failure
patterns.
Theorem 1: Suppose that we recover t failed nodes.

The lower bound of recovery bandwidth is:






Mt(n− t)

k(n− k)
where t < k,

M where t ≥ k.
�

Theorem 2: CORE, which builds on MSR codes for
single failure recovery, achieves the lower bound in
Theorem 1 if we recover a good failure pattern. �

Since most failure patterns are good (with at least
99.1% and 98.4% for IA and PM codes, respectively), we
conclude that CORE minimizes recovery bandwidth for
a majority of failure patterns. In the next subsection, we
show the actual bandwidth savings of CORE in both
good and failure patterns.

3.4 Analysis of Bandwidth Savings

We now study the bandwidth savings of CORE over
conventional recovery. We compute the bandwidth ratio,
defined as the ratio of recovery bandwidth of CORE to
that of conventional recovery. We vary (n, k) and the
number t of failed nodes to be recovered.
We first consider good failure patterns. For CORE, the

recovery bandwidth achieves the lower bound derived
in Theorem 1, and we can directly apply the theo-
retical results. For conventional recovery, the recovery
bandwidth is the amount of original data being stored.
Figure 6(a) shows the bandwidth ratios. We observe
that CORE achieves bandwidth savings in both single

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

B
a
n
d
w

id
th

 r
a
ti
o

t

(12,6)
(16,8)

(20,10)
 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 r
a
ti
o

t

(12,6)
(16,8)

(20,10)

(a) Good failure patterns (b) Bad failure patterns

Fig. 6. Ratio of recovery bandwidth of CORE to that of

conventional recovery.

and concurrent failures. For single failures (i.e., t =
1), CORE directly benefits from existing regenerating
codes, and saves the recovery bandwidth by 70-80%.
For concurrent failures (i.e., t > 1), CORE also shows
bandwidth savings, for example by 44-64%, 25-49%, and
11-36% for t = 2, t = 3 and t = 4, respectively. The
bandwidth savings decrease as t increases, since more
lost data needs to be reconstructed and we need to
retrieve nearly the amount of original data stored. On
the other hand, the bandwidth savings increase with the
values of (n, k). For example, the saving is 36-64% in
(20,10) when 2 ≤ t ≤ 4.
We now study how CORE performs for bad failure

patterns. Recall from Section 3.2 for each bad failure
pattern F , CORE forms a virtual failure pattern F ′ that
is a good failure pattern. We compute the recovery
bandwidth for F ′ based on our theoretical results in
Section 3.3. Figure 6(b) shows the bandwidth ratios. We
find that in all cases we consider, it suffices to add one
surviving node into F ′ (i.e., |F ′| = |F| + 1) and obtain
a good failure pattern. Thus, the recovery bandwidth of
CORE for a bad t-failure pattern is always equivalent to
that for a good (t+1)-failure pattern. From the figure, we
still see bandwidth savings of CORE over conventional
recovery. For example, the saving is 25-49% in (20,10)
when 2 ≤ t ≤ 4.

3.5 Analysis of Reliability

We conduct a reliability analysis on CORE and con-
ventional recovery using a Markov model. Let X be
the random variable representing the time elapsed until
the data of a storage system becomes unrecoverable.
We define the mean-time-to-data-loss (MTTDL) as the
expected value of X . We note that although MTTDL
has its deficiencies [18], it has been used to analyze
the reliability of systems with replication (e.g., [14]) and
erasure codes (e.g., [16], [26], [42]). We only use MTTDL
for reliability comparisons due to different recovery
performance, instead of quantifying the real reliability
of a storage system.
Figure 7 shows the Markov model of (n, k) codes. Let

state t, where 0 ≤ t ≤ n − k, denote that the storage
system has t failures, and state n − k + 1 denote that
the storage system has more than n − k failures and its

0 1 2 n-k n-k+1

nλ (n-1)λ (n-2)λ kλ

µ1 µ2
µn-k

. . .
(k+1)λ

Fig. 7. Reliability model of (n, k) codes.

data becomes unrecoverable. To simplify the problem,
we assume that node failures occur independently and
have constant rates as in prior studies (e.g., [14], [16],
[26], [42]). Let λ denote the failure rate of a single node.
Thus, the transition rate from state t (where 0 ≤ t ≤ n−k)
to state t+1 is (n−t)λ. In concurrent recovery (assuming
the relayer model in Section 2.2 is used), every state t
(where 1 ≤ t ≤ n − k) transitions to state 0 at rate µt,
which depends on the recovery scheme being used. To
compute µt, let B be the transfer rate of downloading
data from surviving nodes for recovery, and S be the
storage capacity of a single storage node (i.e., the amount
of original data is kS). To recover t failures, CORE

downloads t(n−t)
k(n−k) × kS units of data in most cases (see

Theorems 1 and 2)2 and hence µt =
(n−k)B
t(n−t)S ; conventional

recovery downloads kS units of data and hence µt =
B
kS

.
Once the Markov model is constructed, we can obtain
the MTTDL by calculating the expected time to reach
the absorbing state n−k+1. We refer readers to [16] for
the detailed derivations of the MTTDL.
We use (n, k) = (16, 8) as an example to compare the

MTTDLs of CORE and conventional recovery. MTTDL is
determined by three variables: storage capacity of each
node S, transfer rate B and node failure rate λ. First, we
fix the mean failure time 1/λ = 4 years [42] and S =1TB,
and evaluate the impact of B on the MTTDLs. Figure 8(a)
shows the MTTDL results. With the increasing transfer
rate, the recovery rate and hence the MTTDLs of both
CORE and conventional recovery increase. Next, we fix
B = 1Gbps and S =1TB, and evaluate the impact of λ on
the MTTDLs. Figure 8(b) shows the results. Both CORE
and conventional recovery see a decreasing MTTDL as
λ increases. From both Figures 8(a) and 8(b), CORE
has a larger MTTDL than conventional recovery (by 10-
100 times), since it has a higher recovery rate with less
recovery bandwidth. For example, considering T =1TB,
B =1Gbps and λ =0.25, the MTTDL of CORE is 26 times
that of conventional recovery.

4 IMPLEMENTATION

We complement our theoretical analysis with a prototype
implementation. As a proof of concept, we implement
CORE as an extension to the Hadoop Distributed File
System (HDFS) [49]. We modify the source code of HDFS
and its erasure code module HDFS-RAID [22]. We point
out that CORE is also applicable for general large-scale
distributed storage systems.

2. Recall that we assume n = 2k (see Section 3.1), and hence t <

k = n− k and we can apply Theorem 1.

8

10
0

10
5

10
10

10
15

10
20

10
25

0 0.2 0.4 0.6 0.8 1

M
T

T
D

L
 (

y
e
a
rs

)

Transfer rate B (Gbps)

CORE
Conv.

10
0

10
5

10
10

10
15

10
20

10
25

0 0.2 0.4 0.6 0.8 1

M
T

T
D

L
 (

y
e
a
rs

)

Node failure rate λ (per year)

CORE
Conv.

(a) Transfer rate B (b) Node failure rate λ

Fig. 8. Comparisons of MTTDLs of CORE and conven-

tional recovery for different transfer rates and node failure

rates.

4.1 Overview of HDFS-RAID

Files stored in HDFS [49] are divided into large-size
blocks (e.g., 64MB by default), which we refer to as
“segments” in this paper and form the basic units of
HDFS read/write operations. By default, HDFS keeps
three replicas for each segment to achieve data avail-
ability. To provide data availability with smaller storage
overhead, HDFS-RAID is designed to convert replicas
into erasure-coded data and distribute the erasure-coded
data across different nodes. We call the whole conversion
process the striping operation.

HDFS-RAID uses a distributed RAID file system
(DRFS) that manages the erasure-coded data stored in
HDFS. HDFS-RAID adds a new node called RaidNode,
which performs the striping operation and coordinates
the recovery operation. Also, HDFS-RAID provides a
client-side interface called the DRFS client, which han-
dles all read/write requests for the erasure-coded data
stored in HDFS. If a lost segment is requested, then it
performs degraded read to the lost segment.

The striping operation is carried out as follows. For a
given (n, k), the RaidNode first downloads a group of
k segments (from one of the replicas for each segment).
It then encodes the k segments into n segments on a
per-stripe basis (see Section 2.1). The n segments are
then placed on n DataNodes. Unused replicas of the
k segments will later be removed from HDFS. The
RaidNode repeats the same process for another group
of k segments.

4.2 Integration into HDFS-RAID

To integrate our relayer model into HDFS-RAID, we can
simply deploy a relayer daemon in the RaidNode and
the DRFS client for failure recovery and degraded reads,
respectively. CORE is implemented on HDFS release
0.22.0 with HDFS-RAID enabled. We modify both the
RaidNode and the DRFS client to support concurrent
recovery. Since regenerating codes need DataNodes to
generate encoded packets during recovery, we add a
signal handler in each DataNode to respond to requests
for encoded packets. During recovery, the RaidNode or
the DRFS client notifies the surviving DataNodes about

the identities of the failed nodes, and the DataNodes
accordingly generate the encoded packets.
Optimizations of coding. In our current prototype, we

implement RS codes [41] and IA codes [51] as candidates
of erasure codes and regenerating codes, respectively.
We implement them in the ErasureCode module of
HDFS-RAID. To minimize the computational overhead
of the encoding/decoding operations, we implement the
coding schemes in C++ using the Jerasure library [36],
and have the ErasureCode module execute a specific
coding scheme through the Java Native Interface (note
that HDFS-RAID is written in Java). For each code
we implement, we add XOR transformation [3], which
changes all encoding/decoding operations into purely
XOR operations, and XOR scheduling [21], which reduces
the number of redundant XOR operations during en-
coding/decoding. Both XOR transformation and XOR
scheduling are available in the Jerasure library [36].
Pipelined model. The original HDFS-RAID uses a

single-threaded implementation. For further speedup,
we implement a pipelined model that leverages multi-
threading to parallelize the encoding/decoding oper-
ations. Figure 9 shows the implementation of our
pipelined design in CORE, assuming that a single failure
is to be recovered. The RaidNode requests metadata
from the NameNode (Steps 1-2) and downloads seg-
ments from the surviving nodes (Steps 3-4). Then the
RaidNode reconstructs the lost data using the pipelined
implementation, which is composed of three stages.
First, we have an input thread that collects data from the
surviving DataNodes. For regenerating codes, the input
thread fetches the corresponding encoded packets from
DataNodes. The input thread then dispatches the data
via a shared circular buffer to the worker thread, which
decodes the lost data for the failed nodes. It sends the
decoded lost data to an output thread, which then uploads
the resulting segments (Step 5).

5 PROTOTYPE EXPERIMENTS

We perform experiments on CORE, using a distributed
storage system testbed. A major deployment issue is that
the overall performance of recovery is determined by
a combination of factors including network bandwidth,
disk I/Os, encoding/decoding overhead. We address the
following questions: (i) Does minimizing recovery band-
width play a key role in improving the overall recovery
performance (see Section 5.1)? (ii) Can CORE preserve
the performance of the normal striping operation offered
by HDFS-RAID (see Section 5.2)? (iii) How much can
CORE improve the performance of recovery, degraded
reads, and MapReduce (see Sections 5.3-5.5)?
We conduct our experiments on an HDFS testbed

with one NameNode and up to 20 DataNodes. Each
node runs on a quad-core PC equipped with an Intel
Core i5-2400 3.10GHz CPU, 8GB RAM, and a Seagate
ST31000524AS 7200RPM 1TB SATA hard disk. All ma-
chines are equipped with a 1Gb/s Ethernet card and

9

RaidNode

(recovery)

3 34 4 5

NameNode

Input

thread

Output

thread

Worker thread

circular buffers

Input

data

Output

data

1
2

DataNode DataNode DataNode DataNode

ErasureCode

Fig. 9. Illustration of the pipelined implementation in

CORE for the recovery operation, assuming that we re-
cover a single failure. The same implementation applies

to striping (in the RaidNode) and degraded reads (in the

DRFS client).

interconnected over a 1Gb/s Ethernet switch. They all
run Linux Ubuntu 12.04.
We compare RS codes [41], which use conventional

recovery, and CORE, which builds on IA codes [51]
(see Section 4.2). Both codes are implemented in C++
and compiled with g++ 4.6.3 with the -O3 option. Our
microbenchmark results (see Section 5.1) are averaged
over 10 runs, while the macrobenchmark results are
averaged over five runs.

5.1 Microbenchmark Studies

In this subsection, we conduct microbenchmark studies
on the recovery operation. We first evaluate the decoding
performance versus the packet size. We then provide a
breakdown analysis on different recovery steps.
Decoding performance. To evaluate the computa-

tional overhead of RS codes and CORE in recovery, we
measure how fast the relayer decodes the lost data using
the packets downloaded from surviving nodes. Since the
decoding operations are performed over packets (see
Section 2.1), we study how the packet size affects the
decoding performance.
We vary the packet size from 8 bytes to 32KB. Our

evaluation operates on 30 stripes of data for different sets
of (n, k). To stress test the computational performance,
we eliminate the impact of disk I/Os by first loading
the data that is to be downloaded by the relayer for
recovery into memory. We then measure the time for
performing all decoding operations on the in-memory
data. We compute the decoding throughput, defined as the
size of the lost data divided by the decoding time.
Figure 10 shows the decoding throughput for one

to three failures for RS codes and CORE. Larger (n, k)

implies more failures can be tolerated, but has smaller
decoding throughput since the generator matrix becomes
larger and the decoding overhead is higher. Note that the
throughput trend versus the packet size also conforms
to the results of different erasure codes in the study [36].
The throughput initially increases with the packet size,
and reaches maximum when the packet size is around
4KB to 8KB. When the packet size further increases, the
throughput drops because of cache misses [36].
RS codes have higher decoding throughput than

CORE (which builds on IA codes). The reason is that
although CORE downloads less data (i.e., fewer packets)
from surviving nodes than RS codes, it decodes each
lost packet from (n − t)t downloaded packets, while
RS codes decode each lost packet from k downloaded
packets. Thus, CORE has a higher computational com-
plexity than RS codes for the same (n, k). Nevertheless,
in all cases we consider, CORE has at least 500MB/s of
decoding throughput at packet size 8KB. Our following
benchmark results show that the decoding performance
is not the bottleneck in the recovery operation.
Breakdown analysis. Recall from Figure 2 that a

recovery operation can be decomposed into five different
steps. We now conduct a simplified analysis on the
expected performance of each recovery step in RS codes
and CORE. Our goal is to identify the bottleneck, so as
to justify the need of minimizing recovery bandwidth.
We fix the storage capacity of each node to be 1GB.

Suppose that we recover t failed nodes with a total of
tGB of data, and that (n, k) = (20, 10) is used. We collect
the system parameters based on the measurements on
our testbed hardware, and derive the expected time for
each recovery step as shown in Table 2. We elaborate our
derivations as follows.

• I/O step. In both RS codes and CORE, each sur-
viving node reads all its stored data. For our disk
model, our measurements (using the Linux com-
mand hdparm) indicate that the disk read speed
is 116MB/s. Suppose that all surviving nodes read
data in parallel. In the I/O step, both schemes take
1GB÷116MB/s ≈ 8.83s.

• Encode step. In RS codes, surviving nodes do not
perform encoding, while in CORE, surviving nodes
encode their stored data. Suppose that all surviving
nodes perform the encode step in parallel. Our
measurements indicate that the encoding time on
an i5-2400 machine is no more than 0.4 seconds for
1GB of raw data.

• Download step. The relayer downloads data from
other surviving nodes via its 1Gb/s interface, so its
effective transfer rate is upper bounded by 1Gb/s
(or 125MB/s). For RS codes, the relayer always
downloads the same amount of original data, which
is k×1GB = 10GB. For CORE, we consider only
the good failure patterns, which account for the
majority of cases (see Section 3.4). From Theorem 1,
the relayer downloads 0.1t(20− t)GB of data (where
t < k = 10). We can derive the (minimum) down-

10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000

D
e

c
o

d
in

g
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Packet size (bytes)

RS(12,6)
RS(16,8)

RS(20,10)
CORE(12,6)
CORE(16,8)

CORE(20,10)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000

D
e

c
o

d
in

g
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Packet size (bytes)

RS(12,6)
RS(16,8)

RS(20,10)
CORE(12,6)
CORE(16,8)

CORE(20,10)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000

D
e

c
o

d
in

g
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Packet size (bytes)

RS(12,6)
RS(16,8)

RS(20,10)
CORE(12,6)
CORE(16,8)

CORE(20,10)

(a) t = 1 (b) t = 2 (c) t = 3

Fig. 10. Decoding throughput of RS codes and CORE versus the packet size for different (n, k).

TABLE 2
Time comparisons for different recovery steps in RS

codes and CORE in (20,10), with 1GB data per node.

time(s)
RS RS RS CORE CORE CORE

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

I/O 8.83 8.83 8.83 8.83 8.83 8.83
Encode 0 0 0 0.12 0.23 0.35

Download 81.92 81.92 81.92 15.56 29.49 41.78
Decode 1.30 2.75 5.17 1.75 3.69 5.87
Upload 8.19 16.38 24.58 8.19 16.38 24.58

load times for RS codes and CORE accordingly. In
reality, the effective transfer rate is lower than 1Gb/s
and the download times will be higher.

• Decode step. We fix the packet size at 8KB, in which
both RS codes and CORE can achieve high decod-
ing throughput according to our previous experi-
ments. The decoding throughput values of RS codes
are 594-789MB/s, while those of CORE are 523-
585MB/s. We derive the decoding times by dividing
tGB by the decoding throughput for t failures.

• Upload step. The relayer uploads tGB of decoded
data via its 1Gb/s interface. We derive the upload
times as in the download step.

From our derivations, we see that the download step
uses the most time among all operations. Since we
can pipeline the download, decode, and upload steps
in the relayer, we see that the download step is the
bottleneck. This justifies the need of minimizing recovery
bandwidth, which we define as the amount of data
transferred in the download step.

5.2 Striping

We now evaluate the striping operation that is origi-
nally provided by HDFS-RAID when encoding repli-
cas with RS codes and IA codes (used by CORE). We
also compare our pipelined implementation with the
original single-threaded implementation in HDFS-RAID.
Our goal is to show that CORE, when using IA codes,
maintains the striping performance when compared to
RS codes.

For a given (n, k), we configure our HDFS testbed with
n DataNodes, one of which also deploys the RaidNode.
We prepare a kGB of original data as our input. By our
observation, the input size is large enough to give a
steady throughput. HDFS first stores the file with the
default 3-replication scheme. Then the RaidNode stripes
the data into encoded data using either RS codes or IA
codes. The encoded data is stored in n DataNodes. We
rotate node identities when we place the segments so
that the segments are evenly distributed across different
DataNodes for load balancing. We fix the packet size
at 8KB. We set the segment size at 64MB, which is
default setting in HDFS, but for some (n, k), we alter the
segment size slightly to make it a multiple of the strip
size (which is (n−k)×8KB) for IA codes. We measure the
striping throughput as the original size of data divided by
the total time for the entire striping operation.
Figure 11 shows the striping throughput results. By

parallelizing the data transfer and encoding/decoding
steps, our pipelined implementation improves the strip-
ing throughput by around 50% over the original single-
threaded implementation in HDFS-RAID. We see that IA
codes have smaller striping throughput than RS codes
in both implementations. In single-threaded implemen-
tation, IA codes have higher encoding/decoding over-
head and hence show worse performance. In pipelined
implementation, IA codes have strip size r = n − k
and contain more packets per stripe than RS codes
with strip size r = 1. Our pipelined implementation
will not start the encoding thread until the RaidNode
downloads the first stripe of packets for each group of k
segments (see Section 4.1). Thus, RS codes benefit more
from parallelization. However, the throughput drop in
IA codes is small, by at most 6.1% only in our pipelined
implementation.

5.3 Recovery

We evaluate the performance of recovery. We first stripe
encoded data across DataNodes as in Section 5.2. Then
we manually delete all segments stored on t DataNodes

11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

(12,6) (16,8) (20,10)S
tr

ip
in

g
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

(n,k)

CORE orginal
RS orginal

CORE pipeline
RS pipeline

Fig. 11. Striping throughput.

 0

 10

 20

 30

 40

 50

 60

(12,6) (16,8) (20,10)

R
e

c
o

v
e
ry

 t
h
ro

u
g
h
p
u
t

(M
B

/s
)

(n,k)

CORE t=1
RS t=1

CORE t=2
RS t=2

CORE t=3
RS t=3

Fig. 12. Recovery throughput.

to mimic t failures, where t = 1, 2, 3. Since we rotate
node identities when we stripe data, the lost segments
of the t failed DataNodes include both data and parity
segments. The RaidNode recovers the failures and up-
loads reconstructed segments to new DataNodes (same
as the failed DataNodes in our evaluation). Here, we
deploy the RaidNode in one of the new DataNodes. We
measure the recovery throughput as the total size of lost
segments divided by the total recovery time.
Figure 12 shows the recovery throughput results. Both

RS codes and CORE see higher throughput for larger
t as more lost segments are recovered. Overall, CORE
shows significantly higher throughput than RS codes.
The throughput gain is the highest in (20,10). For exam-
ple, for single failures, the gain is 3.45×; for concurrent
failures, the gains are 2.33× and 1.75× for t = 2 and
t = 3, respectively.
Our experimental results are fairly consistent with our

analytical results in Section 3.4. For example, in (20,10),
the ratio of the reconstruction bandwidth of CORE to
that of erasure codes for t = 2 and t = 3 are 0.36
and 0.51, respectively (see Figure 6(a)). These results
translate to the recovery throughput gains of CORE at
2.78× and 1.96×, respectively. Our experimental results
show slightly less gains, mainly due to disk I/O and
encoding/decoding overheads that are not captured in
the recovery bandwidth.

5.4 Degraded Reads

We further evaluate the performance of degraded reads
in the presence of transient failures. The evaluation

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

(12,6) (16,8) (20,10)

D
e
g
ra

d
e
d
 r

e
a
d

th
ro

u
g
h
p
u
t

(M
B

/s
)

(n,k)

CORE t=1
RS t=1

CORE t=2
RS t=2

CORE t=3
RS t=3

Fig. 13. Degraded read throughput.

setting is the same as that of the recovery operation
described in Section 5.3, except that the degraded read
operation is now performed by the DRFS client. Suppose
that t nodes fail, where t = 1, 2, 3. We have the DRFS
client request a lost segment on one of the failed DataN-
odes. The lost segment will be reconstructed from the
data of other surviving DataNodes. Here, we deploy the
DRFS client in one of the failed DataNodes. We measure
the degraded read throughput, defined as the amount of
data being requested divided by the response time.
Figure 13 shows the degraded read throughput results.

RS codes maintain almost the same throughput for each
(n, k), as they always download k segments for recon-
struction. Overall, CORE shows a throughput gain in
degraded reads. For example, if we consider the (20,10)
code, CORE shows degraded throughput gain of 3.75×,
2.34× and 1.70× for t = 1, t = 2 and t = 3, respectively.
Note that our concurrent reconstruction is optimized

for reconstructing t lost segments on t failures. If only
one lost segment is reconstructed while t > 1, it is
possible to use even less reconstruction bandwidth. Nev-
ertheless, our results still show the improvements of our
concurrent reconstruction over the conventional one.

5.5 Runtime of MapReduce with Node Failures

MapReduce [9] is an important data-processing frame-
work running on top of HDFS. Here, we conduct a
preliminary evaluation on how CORE affects the per-
formance of a MapReduce job with node failures.
We run a classical WordCount job using MapReduce

to count the words in a document collection. The Word-
Count job runs a number of tasks of two types: a map
task reads a segment from HDFS and emits each word to
a reduce task, and the reduce task aggregates the results
of multiple map tasks. With node failures, some map
tasks may perform degraded reads to the unavailable
segments.
We consider the same evaluation settings as in Sec-

tion 5.4. Here, we focus on (20,10). We run a WordCount
job on 10GB of plain text data obtained from the Guten-
burg website [19]. Using CORE or RS codes, we stripe
the encoded segments across DataNodes, disable t nodes
to simulate a t-node failure, and then run the WordCount
job on the encoded data. We also consider the baseline

12

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

baseline RS
t=1

CORE
t=1

RS
t=2

CORE
t=2

RS
t=3

CORE
t=3

R
u

n
ti
m

e
 (

s
) 209.2

216.2
212.4

231.2
216.6

242.8
231.0

normal map
degraded map

reduce

Fig. 14. Runtimes of different types of MapReduce tasks.

The overall runtime of the MapReduce job (in seconds) in

each setting is also shown above the bars.

MapReduce job when there is no failure. We use the
default MapReduce scheduler to schedule tasks across
DataNodes.

We measure the runtime performance of different
types of MapReduce tasks: (i) the average runtime of
a normal map task that runs on the available data of
normal nodes, (ii) the average runtime a degraded map
task that runs on the unavailable data of failed nodes,
and (iii) the average runtime of a reduce task. We define
the runtime of a map/reduce task as the duration from
when the task initialization function is called until when
the task completion function is called. The runtime of
a map task captures the time of reading the segments
to be processed; if a map task is degraded and accesses
unavailable data, it issues a degraded read. On the other
hand, the runtime of a reduce task only captures the
processing time for the intermediate results of the map
tasks (i.e., the time of transmitting data from the map
tasks to reduce tasks is excluded). In addition to the
task runtimes, we also measure the overall runtime of
the WordCount job, defined as the duration from when
it starts until when it completes.

Figure 14 shows the runtimes of different MapReduce
components. For the normal map tasks and the reduce
tasks, their runtimes are almost identical to the baseline,
meaning that CORE does not have adverse effects to
such tasks. The degraded map task incurs a longer time
than the baseline due to degraded reads. Nevertheless,
CORE outperforms RS codes in this item. For t =1, 2
and 3, CORE takes 29%, 22% and 18% less time than
RS codes to run a degraded map task. The results also
conform to our theoretical findings. The extra runtime
of the degraded map task over the normal map task is
mainly due to the degraded read request. Consider t = 1.
For RS codes, the extra runtime is 12.4s, while for CORE,
the extra runtime is 2.96s (or 80% less). This is consistent
with our analysis results in Section 3.4.

CORE also improves the overall runtime of the Word-
Count job, although the improvement is less significant
due to other overheads. On the other hand, we expect
that the improvement of CORE becomes more signifi-
cant in a large-scale distributed setting where network

bandwidth is limited. We argue that the MapReduce
evaluation here is preliminary. We plan to consider more
workloads and testbed environments in future work.

6 RELATED WORK

We review related work on the recovery problem for
erasure codes and regenerating codes.
Minimizing I/Os. Several studies focus on minimizing

I/Os required for recovering a single failure in erasure
codes. Their approaches mainly focus on a disk array
system where the disk access is the bottleneck. The au-
thors of [53], [55] propose optimal single failure recovery
for RAID-6 codes. Khan et al. [30] show that finding the
optimal recovery solution for arbitrary erasure codes is
NP-hard. Note that the performance gains of the above
solutions over the conventional recovery are generally
less than 30%, while regenerating codes achieve a much
higher gain in single failure recovery (see Section 5).
The authors of [13], [26], [34], [42]3 have proposed

local recovery codes that reduce bandwidth and I/O
when recovering lost data. They evaluate the codes atop
a cloud storage system simulator (e.g., in [34]), Azure
Storage (e.g., in [26]) and HDFS (e.g., in [13], [42]). It
is worth noting that the local recovery codes are non-
MDS codes with additional parities added to storage, so
as to trade for better recovery performance. All these
studies focus on optimizing single failure recovery. Our
work differs from them in several aspects: (i) we con-
sider optimal minimum storage regenerating codes that
are MDS codes, (ii) we consider recovering both single
and concurrent failures, (iii) we implement and perform
testbed experiments on regenerating codes that require
storage nodes to perform encoding operations.
Minimizing the bandwidth. Regenerating codes [11]

minimize the bandwidth for single failure recovery in a
distributed storage system. There have been many the-
oretical studies on constructing regenerating codes (e.g.,
[4], [11], [35], [37], [38], [44], [51], [52]). Most regenerating
code constructions require surviving nodes to encode
stored data during recovery. Some regenerating code
constructions (e.g., [23], [40], [45], [54]) eliminate such
encoding operations during recovery so as to minimize
both I/Os and bandwidth, but they make different trade-
offs (see discussion in [24]). Implementation studies of
regenerating codes have recently received attention from
the research community, such as [12], [23], [27], [28].
Note that the studies [12], [27], [28] do not integrate
regenerating codes into a real storage system, while
NCCloud [23] implements a storage prototype based on
non-systematic regenerating codes.
Cooperative recovery. Several theoretical studies (e.g.,

[25], [29], [47], [48]) address concurrent failure recov-
ery based on regenerating codes, and they focus on

3. Although the proposed scheme of [13] is also called CORE,
it refers to Cross Object Redundancy and builds on local recovery
codes, which have very different constructions from regenerating codes
considered by our work.

13

recovery of lost data on new nodes. They all consider
a cooperative model, in which the new nodes exchange
among themselves their data being read from surviving
nodes during recovery. The authors of [25], [29] prove
that the cooperative model achieves the same optimal
recovery bandwidth as ours, but they do not provide
explicit constructions of regenerating codes that achieve
the optimal point. The authors of [47], [48] provide
such explicit implementations, but they focus on limited
parameters and the resulting implementations do not
provide any bandwidth saving over erasure codes. A
drawback of the cooperative model is that new nodes
need to perform decoding operations and exchange de-
coded data among themselves, and its implementation
complexities are unknown. In contrast, CORE performs
all decoding operations in the relayer and is more easily
implemented.

7 DISCUSSION

In this section, we discuss some open issues that are not
covered in this paper.
High redundancy of CORE. In this paper, we consider

the MSR codes with fairly high redundancy (i.e., double
redundancy), due to the requirements imposed by the
underlying constructions of optimal exact regenerating
codes. It is shown in [44] that all (n, k) linear MSR codes
with exact recovery must satisfy the condition n ≥ 2k −
2. Other (n, k) codes may be constructed via the non-
systematic, functional regenerating codes [11], which are
suited to archival data [23]. How to extend CORE for
functional regenerating codes remains an open issue.
Concurrent recovery of non-MDS codes. We consider

the concurrent recovery problem of MSR codes, which
achieve the minimum storage efficiency as in MDS codes
(see Section 2.1). One may consider the non-MDS codes,
which incur higher storage overhead but achieve better
single failure recovery performance (e.g. MBR codes [38]
and local recovery codes [13], [26], [34], [42]). An open
issue is how to extend these non-MDS codes to support
efficient concurrent recovery.
Wide-area storage systems. We currently implement

CORE atop HDFS. We plan to explore the implemen-
tation of CORE in wide-area storage systems (e.g., [2],
[7], [8], [31]), where network bandwidth is limited and
the benefits of regenerating codes should become more
prominent. Also, one side benefit of CORE is that we can
delay recovery until the number of failed nodes reaches
some threshold so as to we avoid recovering transient
failures that are commonly found in wide-area networks
[2], [6], [33].

8 CONCLUSIONS

We address the reconvery problem in a distributed stor-
age system in the presence of single and concurrent
failures, from both theoretical and applied perspectives.
We explore the use of regenerating codes (or network
coding) to provide fault-tolerant storage and minimize

the bandwidth of data transfer during recovery. We pro-
pose a system CORE, which generalizes existing optimal
single-failure-based regenerating codes to support the
recoveries of both single and concurrent failures. We
theoretically show that CORE minimizes the recovery
bandwidth in most concurrent failure patterns. We fur-
ther prototype CORE as a layer atop Hadoop HDFS,
and show via testbed experiments that we can speed up
both recovery and degraded read operations. The source
code of our CORE prototype is available for download
at: http://ansrlab.cse.cuhk.edu.hk/software/core.

ACKNOWLEDGMENTS

This work is supported by grants AoE/E-02/08 and ECS
CUHK419212 from the University Grants Committee of
Hong Kong.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network Information
Flow. IEEE Trans. on Information Theory, 46(4):1204–1216, Jul 2000.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
Recall: System Support for Automated Availability Management.
In Proc. of USENIX NSDI, Oct 2004.

[3] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman. An XOR-based Erasure-Resilient Coding Scheme.
Technical report, The International Computer Science Institute,
Berkeley, CA, Aug 1995.

[4] V. R. Cadambe, C. Huang, and J. Li. Permutation Code: Opti-
mal Exact-Repair of a Single Failed Node in MDS Code Based
Distributed Storage Systems. In Proc. of IEEE ISIT, 2011.

[5] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al. Windows Azure
Storage: A Highly Available Cloud Storage Service with Strong
Consistency. In Proc. of ACM SOSP, Oct 2011.

[6] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,
M. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient Replica
Maintenance for Distributed Storage Systems. In Proc. of USENIX
NSDI, May 2006.

[7] Cleversafe. http://www.cleversafe.com.
[8] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-

Area Cooperative Storage with CFS. ACM SIGOPS Operating
Systems Review, 35(5):202–215, Dec 2001.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. In Proc. of USENIX OSDI, Dec 2004.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-Value Store. In Proc. of
ACM SOSP, 2007.

[11] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network Coding for Distributed Storage Systems. IEEE
Trans. on Information Theory, 56(9):4539–4551, Sep 2010.

[12] A. Duminuco and E. Biersack. A Practical Study of Regenerating
Codes for Peer-to-Peer Backup Systems. In Proc. of IEEE ICDCS.
IEEE, Jun 2009.

[13] K. Esmaili, P. Lluis, and A. Datta. CORE: Cross-Object Redun-
dancy for Efficient Data Repair in Storage Systems. In Proc. of
IEEE BigData, 2013.

[14] D. Ford, F. Labelle, F. I. Popovici, M. Stokel, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In Proc. of USENIX OSDI, Oct 2010.

[15] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System.
In Proc. of ACM SOSP, Dec 2003.

[16] K. Greenan. Reliability and Power-Efficiency in Erasure-Coded Storage
Systems. PhD thesis, University of California, Santa Cruz, 2009.

[17] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz. Optimizing
Galois Field Arithmetic for Diverse Processor Architectures and
Applications. In Proc. of IEEE MASCOTS, 2008.

[18] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean time to mean-
ingless: MTTDL, Markov models, and storage system reliability.
In Proc. of USENIX HotStorage, 2010.

14

[19] Gutenberg. http://www.gutenberg.org/.
[20] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly

Durable, Decentralized Storage Despite Massive Correlated Fail-
ures. In Proc. of USENIX NSDI, May 2005.

[21] J. Hafner, V. Deenadhayalan, K. Rao, and J. Tomlin. Matrix
Methods for Lost Data Reconstruction in Erasure Codes. In Proc.
of USENIX FAST, Dec 2005.

[22] HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.
[23] Y. Hu, H. Chen, P. Lee, and Y. Tang. NCCloud: Applying Network

Coding for the Storage Repair in a Cloud-of-Clouds. In Proc. of
USENIX FAST, Feb 2012.

[24] Y. Hu, P. P. C. Lee, and K. W. Shum. Analysis and Construction
of Functional Regenerating Codes with Uncoded Repair for Dis-
tributed Storage Systems. In Proc. of IEEE INFOCOM, Apr 2013.

[25] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li. Cooperative Recovery of
Distributed Storage Systems from Multiple Losses with Network
Coding. IEEE Journal on Selected Areas in Communications (JSAC),
28(2):268–276, Feb 2010.

[26] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure Coding in Windows Azure Storage. In
Proc. of USENIX ATC, Jun 2012.

[27] Z. Huang, E. Biersack, and Y. Peng. Reducing Repair Traffic in
P2P Backup Systems: Exact Regenerating Codes on Hierarchical
Codes. ACM Trans. on Storage, 7(3):10, Oct 2011.

[28] S. Jiekak, A.-M. Kermarrec, N. L. Scouarnec, G. Straub, and A. Van
Kempen. Regenerating Codes: A System Perspective. ACM
SIGOPS Operating Systems Review, 47(2):23–32, Jul 2013.

[29] A. Kermarrec, N. Le Scouarnec, and G. Straub. Repairing Multiple
Failures with Coordinated and Adaptive Regenerating Codes. In
Proc. of NetCod, Jun 2011.

[30] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang. Rethink-
ing Erasure Codes for Cloud File Systems: Minimizing I/O for
Recovery and Degraded Reads. In Proc. of USENIX FAST, Feb
2012.

[31] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An Architecture for Global-
Scale Persistent Storage. In Proc. of ACM ASPLOS-IX, Nov 2000.

[32] R. Li, J. Lin, and P. P. C. Lee. CORE: Augmenting Regenerating-
Coding-Based Recovery for Single and Concurrent Failures in
Distributed Storage Systems. In Proc. of IEEE MSST, May 2013.

[33] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties in
Tolerating Correlated Failures in Wide-area Storage Systems. In
Proc. of USENIX NSDI, May 2006.

[34] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, and J. Li. Simple
Regenerating Codes: Network Coding for Cloud Storage. In Proc.
of IEEE INFOCOM, Mar 2012.

[35] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe. Repair
Optimal Erasure Codes through Hadamard Designs. In Proc. of
Allerton Conf., 2011.

[36] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn. A
Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries for Storage. In Proc. of USENIX FAST, Feb 2009.

[37] K. Rashmi, N. Shah, and P. Kumar. Optimal Exact-Regenerating
Codes for Distributed Storage at the MSR and MBR Points via a
Product-Matrix Construction. IEEE Trans. on Information Theory,
57(8):5227–5239, Aug 2011.

[38] K. Rashmi, N. Shah, P. Kumar, and K. Ramchandran. Explicit Con-
struction of Optimal Exact Regenerating Codes for Distributed
Storage. In Proc. of Allerton Conf., Sep 2009.

[39] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran. A Solution to the Network Challenges of
Data Recovery in Erasure-Coded Distributed Storage Systems: A
Study on the Facebook WSarehouse Cluster. In Proc. of USENIX
HotStorage, 2013.

[40] K. Rashmi, N. B. Shah, and K. Ramchandran. A Piggybacking
Design Framework for Read-and-Download-Efficient Distributed
Storage Codes. In Proc. of IEEE ISIT, 2013.

[41] I. Reed and G. Solomon. Polynomial Codes over Certain Finite
Fields. Journal of the Society for Industrial and Applied Mathematics,
8(2):300–304, Jun 1960.

[42] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. XORing Elephants: Novel
Erasure Codes for Big Data. Proc. of VLDB Endowment, 2013.

[43] B. Schroeder and G. A. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In Proc. of
USENIX FAST, Feb 2007.

[44] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran. Interference
Alignment in Regenerating Codes for Distributed Storage: Neces-
sity and Code Constructions. IEEE Trans. on Information Theory,
58(99):2134 – 2158, Apr 2012.

[45] N. B. Shah. On Minimizing Data-Read and Download for Storage-
Node Recovery. IEEE Communications Letters, 17(5):964–967, 2013.

[46] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran. Explicit
Codes Minimizing Repair Bandwidth for Distributed Storage. In
IEEE Information Theory Workshop, 2010.

[47] K. Shum. Cooperative Regenerating Codes for Distributed Stor-
age Systems. In Proc. of IEEE ICC, Jun 2011.

[48] K. Shum and Y. Hu. Exact Minimum-Repair-Bandwidth Coop-
erative Regenerating Codes for Distributed Storage Systems. In
Proc. of IEEE ISIT, Jul 2011.

[49] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In Proc. of IEEE MSST, May 2010.

[50] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin.
Lazy Means Smart: Reducing Repair Bandwidth Costs in Erasure-
Coded Distributed Storage. In Proc. of ACM SYSTOR, 2014.

[51] C. Suh and K. Ramchandran. Exact-Repair MDS Code Construc-
tion using Interference Alignment. IEEE Trans. on Information
Theory, 57(3):1425–1442, Mar 2011.

[52] I. Tamo, Z. Wang, and J. Bruck. Zigzag Codes: MDS Array
Codes with Optimal Rebuilding. IEEE Trans. on Information Theory,
59(3):1597–1616, 2013.

[53] Z. Wang, A. Dimakis, and J. Bruck. Rebuilding for Array Codes
in Distributed Storage Systems. In IEEE GLOBECOM Workshops,
Dec 2010.

[54] Z. Wang, I. Tamo, and J. Bruck. Long MDS Codes for Optimal
Repair Bandwidth. In Proc. of IEEE ISIT, 2012.

[55] L. Xiang, Y. Xu, J. Lui, Q. Chang, Y. Pan, and R. Li. A Hybrid Ap-
proach to Failed Disk Recovery Using RAID-6 Codes: Algorithms
and Performance Evaluation. ACM Trans. on Storage, 7(3):11, Oct
2011.

Runhui Li received his B.Eng. degree in Com-
puter Science and Technology from University
of Science and Technology of China in 2011.
He is currently working toward the Ph.D. degree
in Computer Science and Engineering at the
Chinese University of Hong Kong. His research
interests are in distributed systems and data
storage.

Jian Lin received his B.Eng. degree in Mathe-
matics and Information engineering and M.Phil.
degree in Computer Science and Engineering
from the Chinese University of Hong Kong in
2011 and 2013, respectively. He is now a soft-
ware developer at Epic. His research interests
are in storage systems and distributed systems.

Patrick P. C. Lee received the B.Eng. degree
(first-class honors) in Information Engineering
from the Chinese University of Hong Kong in
2001, the M.Phil. degree in Computer Science
and Engineering from the Chinese University of
Hong Kong in 2003, and the Ph.D. degree in
Computer Science from Columbia University in
2008. He is now an assistant professor of the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests are in cloud storage, dis-

tributed systems and networks, and security/resilience.

